Iron-Mediated Carboarylation/Cyclization of Propargylanilines with Acetals: A Concise Route to Indeno[2,1‑c]quinolines

Qin Yang,[†] Tongyu Xu,[†] and Zhengkun Yu^{*,†,‡}

† Dalian Institute of Chemical Physics, Chinese Acade[my](#page-3-0) of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China

‡ State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, P. R. China

S Supporting Information

[AB](#page-3-0)STRACT: FeCl₃- and FeBr₃-mediated tandem carboarylation/cyclization of propargylanilines with diethyl benzaldehyde acetals furnished the tetracyclic TSN core of indeno $[2,1-c]$ quinolines. 5-Tosyl-6,7-dihydro-5H-indeno $[2,1-c]$ quinoline and 7H-indeno[2,1-c]quinoline derivatives were obtained in good to excellent yields, respectively, by tuning the $FeX₃$ loadings and/or reaction temperatures.

onstruction of functionalized carbo- and heteropolycyclic architectures with minimum operations from relatively

Table 1. Screening of Reaction Conditions^a

TsN	PhCH(OEt) ₂ 1a 2a	FeX ₃ . NTs Ρh 3a	Рh 4a	
			yield ^b (%)	
entry	$[Fe]$ (equiv)	temp (°C)	3a	4a
$\mathbf{1}$	FeCl ₃ (0.2)	80	73	9
2^c	FeBr ₃ (0.2)	80	75	14
3	FeCl ₃ (0.3)	80	75	18
$\overline{4}$	FeBr ₃ (0.3)	80	71	19
5	FeCl ₃ (1.0)	80	56	37
6	FeBr ₃ (1.0)	80	56	31
7^d	FeCl ₃ (1.0)	25	72	18
8 ^d	FeBr ₃ (1.0)	25	72	21
9	FeBr ₃ (2.0)	80		54
10	FeBr ₃ (2.5)	80		67
11	FeBr ₃ (3.0)	80		82
12	FeCl ₃ (3.0)	80		73
13	FeCl ₃ .6H ₂ O (3.0)	80		43
14	FeBr ₃ (3.0)	100		69
15	FeBr ₃ (3.0)	60		69
16	FeB $r_3(3.0)$	25	34	31
17	FeCl ₃ (3.0)	25		47

^aConditions: 1a (0.3 mmol), 2a (0.6 mmol), DCE (3 mL), N₂, 5 h.
^bIsolated vield ^c95% conversion for 1a ^d2a (0.45 mmol), CH.CL (3 Isolated yield. ^c95% conversion for 1a. d 2a (0.45 mmol), CH₂Cl₂ (3 mL), 18 h. DCE = 1,2-dichloroethane.

simple building blocks has been a challenging task in organic synthesis.¹ Tetracyclic indenoquinoline fused with quinoline² and indene³ frameworks is a common structural unit in a number [of](#page-3-0) biologically active natural products and pharm[a-](#page-3-0) ceuticals such as DNA topoisomerase inhibitor TAS-103⁴ and its analogues I^5 and $II, ^{6,7}$ etc., for anticancer treatment. Timeconsuming multistep procedures have usually been appli[e](#page-3-0)d to access a[n](#page-3-0) indeno $[2,1-c]$ quinoline core consisting of tetracycles A−D, involving Diels−Alder⁵ and Friedel–Crafts⁶ reactions, cyclization,⁸ and addition to carbonyl compounds.⁹ Alkynes were documented to underg[o v](#page-3-0)ersatile cycloadditio[n,](#page-3-0) carbocyclization, a[nd](#page-3-0)/or cycloisomerization^{10,11} to form q[uin](#page-3-0)olines,¹² indeno $[1,2-b]$ quinolines,¹³ and indeno $[1,2-c]$ quinolines,¹⁴ while indeno $[2,1-c]$ quinolines have [not](#page-3-0) yet been prepared [by](#page-3-0) such methods.

Recently, iron salts have been paid much attention as promising alternatives to traditional transition-metal catalysts¹⁵ and also employed for the synthesis of polycyclic compounds.¹⁶ $Fe(OTf)$ ₃ catalyzed the intramolecular hydroarylation [of](#page-3-0) alkynes with electron-deficient arenes, building 1,2-dihydroq[ui](#page-3-0)nolines and phenanthrenes.^{12c} FeCl₃ mediated the intramolecular isomerization/cyclodehydration of substituted 2- [(indoline-3-ylidene)(methyl[\)\]be](#page-3-0)nzaldehydes to form benzo-[b]carbazoles,^{16b} which were used for the synthesis of indenofused heterocycles.^{16c} We recently reported FeX₃-promoted Prins-type cy[cliz](#page-3-0)ation of alkynyl acetals 17 and intermolecular cyclization of diyne[s w](#page-3-0)ith acetals to give tricyclic compounds.¹⁸ Herein, we report FeX_3 -mediated carb[oar](#page-3-0)ylation/cyclization/ detosylation of propargylanilines with benzaldehyde acetals f[or](#page-3-0) the synthesis of indeno $[2,1-c]$ quinolines.

Received: October 16, 2014 Published: December 1, 2014

^aConditions: 1 (0.3 mmol), 2 (0.6 mmol), FeCl₃ (0.09 mmol), DCE (3 mL), 80 °C, N₂, 5 h. ^bIsolated yield. ^c0.09 mmol FeBr₃ was used as the catalyst. d Conditions: 1 (0.3 mmol), 2 (0.45 mmol), FeCl₃ (0.3 mmol), CH₂Cl₂ (3 mL), 25 °C, N₂, 18 h.

Initially, the reaction of propargylaniline (1a) with diethyl benzaldehyde acetal (2a) was performed to screen the reaction conditions (Table 1). With 20 mol % $FeCl₃$ as the catalyst at 80 °C, the reaction proceeded to form 5-tosyl-6,7-dihydro-5Hinde[no](#page-0-0) $[2,1-c]$ quinoline $(3a, 73%)$ and $7H$ -indeno $[2,1-c]$ quinoline (4a, 9%), achieving 100% conversion for 1a (Table 1, entry 1). Increasing the $FeX₃$ loading rendered 1a to be completely converted (Table 1, entries 1−4), but use of 1 equiv [o](#page-0-0)f FeX₃ deteriorated the selectivity to yield $3a$ (56%) and $4a$ (<40%). Longer reaction tim[e](#page-0-0) enhanced the yield of 4a to 42− 47%. To our delight, the reaction afforded 3a in 72% yield at ambient temperature (Table 1, entries 7 and 8). At 80 °C, FeBr₃ (3 equiv) acted more efficiently than FeCl₃ and FeCl₃. 6H2O to generate 4a (82%) [\(T](#page-0-0)able 1, entries 9−13). Varying temperatures at 100 or 60 °C by using FeBr₃ as the promoter lowered the yield of 4a (69%), and a[m](#page-0-0)bient temperature led to indiscriminative formation of 3a (34%) and 4a (31%) (Table 1, entries 14−17). Thus, the optimal conditions for the preparation of 3a and 4a (Table 1, entries 3 and 11) we[re](#page-0-0) achieved. It is noted that other Lewis acids such as $SnCl₄$ could also promoted the reaction: under t[he](#page-0-0) conditions employed for

entry 7 of Table 1, the reaction using 1 equiv of $SnCl₄$ afforded 3a in 54% yield.

Under the opt[im](#page-0-0)ized conditions, the substrate scope for the synthesis of 3 was explored (Table 2). Propargylanilines 1a−g reacted with 2 to afford 3a−g in 71−90% yields, exhibiting no obvious substituent effect from the NAr moieties (Table 2, entries 1−7). o- or m-methyl on the aryl group of a propargyl moiety favored the formation of $3h(75%)$ and $3i(77%)$, while a p-methyl lowered the yield of 3j (64%) (Table 2, entries 8− 10). A p-methyl on the aryl group of the NAr functional group facilitated the generation of 3k (Table 2, entry 11). 1,2- Dihydroquinolines 5a (53%) and 5b (46%) were isolated from the reactions of 1l and 1m, respectively (Table 2, entries 12 and 13). Substituted acetals 2b−k reacted to give diverse target products 3n−w (58−80%) (Table 2, entries 14−23). It should be noted that arylpropargylaniline of type 1 bearing a p-OMe substituent only reacted to give a product of type 3 in 33% yield. The acetals derived from heterocyclic aromatic aldehydes such as 2-furaldehyde and 2-thiophenaldehyde could not undergo the desired reactions. The acetals of the alkyl aldehydes are not very stable under the stated conditions $17,18$ and were not applied in the reactions.

Table 3. FeX₃-Mediated Synthesis of 7H-Indeno^[2,1-c]quinolines $(4)^a$

 a Conditions: 1 (0.3 mmol), 2 (0.6 mmol), FeX $_3$ (0.9 mmol), DCE (3 mL), 80 °C, N $_2$, 5 h. b Isolated yield. c Using FeBr $_3$. d Using FeCl $_3$.

Scheme 1. Control Experiments^a

^aConditions: DCE as the solvent, N₂, 80 °C, 5 h; (i) 10 mol % $FeCl₃$ or FeBr₃, 27–28%; (ii) 30 mol % FeCl₃ or FeBr₃, 82–83%; (iii) 1 equiv FeCl₃ or FeBr₃, CH₂Cl₂, 25 °C, 18 h; (iv) 3 equiv FeCl₃ or FeBr₃, 64–65%; (v) 3 equiv FeCl₃ or FeBr₃, 58–72%; (vi) 10 equiv NaOMe, THF, reflux, 24 h, 33%; (vii) 3 equiv FeCl₃ or FeBr₃, 74– 77%. THF = tetrahydrofuran.

Next, the protocol generality for the preparation of 4 was investigated under the optimal conditions (Table 3). Both FeBr₃ and FeCl₃ could promote the desired reactions. Substituents such as Me, OEt, Cl, F, and Ac were tolerated on the aryl groups of the NAr moieties (Table 3, entries 1−11). Unsubstituted 1a and 2-Me- and 2-Cl-substituted substrates 1n and 1p efficiently underwent the reactions with 2a, giving 4a (82%), 4d (88%), and 4i (88%), respectively (Table 3, entries 1, 4, and 9). The 4- and 3-electron-withdrawing substituents rendered low yields for 4g (67%), 4h (51%), and 4k (61%). A methyl or methoxy on the aryl group of a propargyl moiety of 1 did not exhibit obvious effect on the yields of 4l−n (75−84%), whereas 3,5-dimethyls remarkably improved the formation of 4o (96%) and 4p (98%) (Table 3, entries 12−16). An electronwithdrawing substituent such as chloro on the aryl functional unit of a propargyl moiety of 1 deteriorated the reaction efficiency to give 4q (61%) and 4r (67%). Compound 1a also reacted with other acetals to form the target products 4s−w in 53−74% yields (Table 3, entries 19−23).

To probe the reaction mechanism, control experiments were conducted (Scheme 1). Compound 1a reacted with 2a in the presence of 10 mol % of FeCl₃ or FeBr₃ to afford 1-tosyl-1,2dihydroquinoline 5c (27−28%) via intermolecular carboarylation/cyclization, which further reacted under the stated conditions as shown in Tables 2 and 3 to give 3a and 4a in decent yields, respectively. Compound 3a could be converted

Scheme 2. Proposed Mechanism

to 4a with FeCl₃ or FeBr₃ as the promoter. These results have revealed that both 5 and 3 can act as the intermediates to form **4** in the catalytic cycle. 4-Phenylquinoline $(6a)^{19}$ could also be utilized to access 4a, further suggesting that species of types 5 and 6 may be generated as the reaction intermediates. It is noteworthy that 3a, 4i, and 5c were structurally confirmed by X-ray crystallographic analysis (see the Supporting Information).

A plausible mechanism is proposed (Scheme 2). Acetal 2a initially reacts with FeX₃ (X = Cl or Br) to form FeX₃(OEt)[−] anion (A) and oxocarbonium cation PhCH=OEt⁺ (B).^{17,18} Cation B interacts with propargylaniline 1a to generate vinyl carbocation C stabilized by an aryl group, which undergoes intramolecular Friedel−Crafts reaction to yield D. Deprotonation of D by species A forms intermediate 5c and ethanol, regenerating $FeX₃$. Following path a, species $5c$ is converted to product $3a^{20}$ via the possible cationic species E^{21} and F^{18} assisted by FeX₃. Compound 3a further reacts with FeX₃ to undergo detosylation/aromatization,¹² forming 4a. Compound 5c may also react with FeX_3 to form 6a via species H by detosylation/aromatization (path b), which further undergoes carboarylation with $FeX₃$ to furnish 4a and ethanol and regenerate the catalyst.

In summary, FeX_3 -mediated tandem reactions of propargylanilines with aromatic aldehyde acetals form indeno[2,1 c]quinolines in good to excellent yields through carboarylation/ cyclization under mild conditions. The present synthetic method provides a concise and nontoxic metal-mediated route to highly functionalized heteropolycyclic architectures.

■ ASSOCIATED CONTENT

S Supporting Information

Complete experimental procedures and characterization data for the prepared compounds; X-ray crystallographic data for 3a,

4i, and 5c. This material is available free of charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION

Corresponding Author

*E-mail: zkyu@dicp.ac.cn.

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (21272232).

REFERENCES

(1) Shimizu, M.; Hiyama, T. Eur. J. Org. Chem. 2013, 8069.

(2) Fonseca-Berzal, C.; Rojas Ruiz, F. A.; Escario, J. A.; Kouznetsov, V. V.; Gómez-Barrio, A. Biorg. Med. Chem. Lett. 2014, 24, 1209.

(3) Koike, T.; Hoashi, Y.; Takai, T.; Nakayama, M.; Yukuhiro, N.; Ishikawa, T.; Hirai, K.; Uchikawa, O. J. Med. Chem. 2011, 54, 3436. (4) (a) Ryckebusch, A.; Garcin, D.; Lansiaux, A.; Goossens, J.-F.;

Baldeyrou, B.; Houssin, R.; Bailly, C.; Hénichar, J.-P. J. Med. Chem. 2008, 51, 3617. (b) Tseng, C.-H.; Tzeng, C.-C.; Yang, C.-L.; Lu, P.-J.; Liu, Y.-P.; Chen, H.-L.; Chen, C.-Y.; Yang, C.-N.; Chen, Y.-L. Mol. Divers. 2013, 17, 781.

(5) Kouznetsov, V. V.; Romero, B. A. R.; Saavedra, L. A. Synthesis 2009, 4219.

(6) Upadhayaya, R. S.; Lahore, S. V.; Sayyed, A. Y.; Dixit, S. S.; Shinde, P. D.; Chattopadhyaya, J. Org. Biomol. Chem. 2010, 8, 2180. (7) Upadhayaya, R. S.; Dixit, S. S.; Földesi, A.; Chattopadhyaya, J. Bioorg. Med. Chem. 2013, 23, 2750.

(8) Jiang, B.; Feng, B.-M.; Wang, S.-L.; Tu, S.-J.; Li, G. G. Chem. Eur. J. 2012, 18, 9823.

(9) Liu, X.; Zhang, Q.; Zhang, D. Y.; Xin, X. Q.; Zhang, R.; Zhou, F. G.; Dong, D. W. Org. Lett. 2013, 15, 776.

(10) (a) Luo, Y.; Pan, X. L.; Yu, X. X.; Wu, J. Chem. Soc. Rev. 2014, 43, 834. (b) Gulevich, A. V.; Dudnik, A. S.; Chernyak, N.; Gevorgyan, V. Chem. Rev. 2013, 113, 3084.

(11) Selected recent examples, see: (a) Seoane, A.; Casanova, N.; Quiñones, N.; Mascareñas, J. L.; Gulías, M. J. *Am. Chem. Soc.* **2014**, 136, 834. (b) Zi, W. W.; Toste, F. D. J. Am. Chem. Soc. 2013, 135, 12600. (c) Walkinshaw, A. J.; Xu, W. S.; Suero, M. G.; Gaunt, M. J. J. Am. Chem. Soc. 2013, 135, 12532.

(12) (a) Yamamoto, Y. Chem. Soc. Rev. 2014, 43, 1575. (b) Zeng, X. M. Chem. Rev. 2013, 113, 6864. (c) Komeyama, K.; Igawa, R.; Takaki, K. Chem. Commun. 2010, 46, 1748.

(13) Chen, M.; Sun, N.; Liu, Y. H. Org. Lett. 2013, 15, 5574.

(14) Pan, X. L.; Luo, Y.; Wu, J. Org. Biomol. Chem. 2012, 10, 1969.

(15) (a) Gopalaiah, K. Chem. Rev. 2013, 113, 3248. (b) Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Rev. 2011, 111, 1293. (c) Sarhan, A. A. O.; Bolm, C. Chem. Soc. Rev. 2009, 38, 2730.

(16) (a) Richard, V.; Ipouck, M.; Merel, D. S.; Gaillard, S.; Whitby, R. ́ J.; Witulski, B.; Renaud, J.-L. Chem. Commun. 2014, 50, 593. (b) Paul, K.; Bera, K.; Jalal, S.; Sarkar, S.; Jana, U. Org. Lett. 2014, 16, 2166. (c) Rana, S.; Brown, M.; Mukhopadhyay, C. RSC Adv. 2013, 3, 3291. (17) (a) Xu, T. Y.; Yang, Q.; Li, D. P.; Dong, J. H.; Yu, Z. K.; Li, Y. X. Chem.Eur. J. 2010, 16, 9264. (b) Xu, T. Y.; Yu, Z. K.; Wang, L. D. Org. Lett. 2009, 11, 2113.

(18) Xu, T. Y.; Yang, Q.; Ye, W. J.; Jiang, Q. B.; Xu, Z. Q.; Chen, J. P.; Yu, Z. K. Chem.-Eur. J. 2011, 17, 10547.

(19) Gurunathan, S.; Perumal, P. T. Tetrahedron Lett. 2011, 52, 1783.

(20) (a) Sawama, Y.; Shishido, Y.; Kawajiri, T.; Goto, R.; Monguchi, Y.; Sajiki, H. Chem.-Eur. J. 2014, 20, 510. (b) Stadler, D.; Bach, T.

Angew. Chem., Int. Ed. 2008, 47, 7557. (c) Iovel, I.; Mertins, K.; Kischel, J.; Zapf, A.; Beller, M. Angew. Chem., Int. Ed. 2005, 44, 3913. (21) Sawama, Y.; Goto, R.; Nagata, S.; Shishido, Y.; Monguchi, Y.;

Sajiki, H. Chem.-Eur. J. 2014, 20, 2631.